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Similarity solutions of nonlinear diffusion problems related to mathematical hydraulics
and the Fokker-Planck equation
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Similarity solutions of the shallow-water equation with a generalized resistance term are studied for open
channel flows when both inertial and gravity forces are negligible. The resulting model encompasses various
particular cases that appear, in addition to mathematical hydraulics, in diverse physical phenomena, such as
gravity currents, creeping flows of Newtonian and non-Newtonian fluids, thin films, and nonlinear Fokker-
Planck equations. Solutions of both source-type and dam-break problems are analyzed. Closed-form solutions
are discussed, when possible, along with a qualitative study of two phase-plane formulations based on two
different variable transformations.
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. INTRODUCTION ah

Ecosazsin 0-j, (2
Strongly nonlinear parabolic partial differential equations

arise in many problems of hydraulic engineering and hydrolwheret is time, x is the spatial coordinate along the channel,

ogy, such as flood propagation in channels and riy&rS],  his the water levely is the velocity averaged over the water

groundwater flow[4], catchment and coastal hydrology depth, sind is the bed slope, angd(a function ofh andu) is

[5-7, as well as infiltration and subsurface hydrology the friction slope, which accounts for the resistances to the

[8-12. An investigation of this type of equation is also mo- flow.

tivated by the multitude of physical problems having the In hydraulics, most of the open-channel flows fall in the

same mathematical structure; we mention, for example, theynamically rough regime anflis typically modeled using

applications of the porous-media equation to heat conduahe empirical Chezy law, which for large cross sections reads
tion, plasma physics, and non-Newtonian fluid mechanics

[13-14, rock-blasting modelg17], and gravity currents _uju] | u?
[18]. These equations also represent special forms of equa- 1= Cc2?h ﬁ“' 3)
tions that govern many modern problems related to thin film
flows [19—21], whose applications encompass different fieldswhereC is the Chezy coefficient and=|u|/u [1]. The co-
of engineering, biology, and chemistf22—-27. Finally, in  efficientC in general depends on the cross-section shape and
the theory of stochastic processes, similar equations are ien the roughness of the bed. For most practical applications
terpreted as nonlinear Fokker-Planck equatif®8,29; as it is mainly a function ofh, so thatj=h™2. In particular, for
will be seen, in this context self-similar source-type solutiondarge cross sectiong is equal to 1 ifC is assumed to be
represent important classes of distributions appearing ionstant, while8 is equal to 4/3 ifC is modeled according
modern physicqe.g., Lévy-type and Tsallis-type distribu- to the empirical Manning/Gauckler-Strickler formula
tions [30,31)). Coch®[1].

The aim of this paper is to discuss some similarity solu- The structure of Eq(3) can then be extended to other
tions of a generalization of an equation that appears in mathproblems by generalizing the relation betwgeandu, as
ematical hydraulics. Within the framework of the shallow-

water approximation and in case of negligible inertial terms, o uju** _ (pu)® 4)
the one-dimensional continuity and momentum equations for 1= kb~ kens M

open-channel flows with an impermeable bed in the case of

large cross sections af&], respectively, wherea>0. As a result, Eqql), (2), and(4) form a general

system that, depending on the values of the parameters
a and B, can represent very different physical processes.
Jh 9 We notice in passing that whem=0, i.e.,j=uh™?, h does
—+—(uh)=0, (1) not depend on time and E@2) admits the exact solution
gt Jx h=[(B+1)(ux+Cy)]"#*D with C, integration constant. It is
also interesting to notice that under uniform flow conditions
(h=consj, the relationship betweeh and g=uh, which is
*Electronic address: amilcare@duke.edu known as the rating curve, is a power law given by the bal-
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ance between gravitysin ) and the resistance to flow), h

ie., hocqa/(a+ﬁ)_ ¢: G(a+1)/)(k—ay/)(t—[a7+)\(a+1)]/)(’
In the case of unsteady flow, with the further assumptions

of negligible bed slope¢~0, an equation foh can be ob-

tained by introducing4) in (2) and substituting the resultin - X

expressi)gn fow in (1%, )i.e.,( : ’ g €= GB+Dixgadxilad-Np+DIx (7)
ah +,ui{kh(“+3)/“<— a—h,LL)l/a] . 5) Substituting Eq(7) into Eq.(5) yields
at T ax ax wyena+]) | ad-NB+1)

The previous relation includes in itself some classical equa- Y ¢+ ¥ 3

tions, such as the heat equatiop=-8=1) and the Bouss- ~ N

inesq or porous-media equatiéa=1, 5=0) [4]. In hydrau- ulp (=¢'w™1" =0, (8)

lics, whena=2 andpB=1 or 8=4/3, Eq.(4) corresponds t0 \yhere primes denote derivatives with respedf.ttm general,

Chezy's law for very large cross sections. Viscous flows withthe previous relation is not solvable in closed form, but it can
different rheology can be described wiiFa+1 [26]. The  pe reduced by the substitutigh7]

cases withg>-1, which are typical of hydraulics, may

show interesting effects such as fronts that propagate at finite (=¢' )
speed or fronts that remain stationary for a finite time before X= 57’
beginning to move, i.e., waiting-time solutiofi32]. More-

over, interpretingh(x,t) and q(x,t) as probability density ©)
functions(PDF9 and probability current§33], respectively, _ which maintains the same signs of the original systén).
Eq. (5) can be read as a nonlinear Fokker-Planck equat'o'f'nserting then Eq(9) into Eq.(8), we obtain the autonomous

for h(x,1t). equation
In what follows we will analyze similarity solutions of

Eg. (5) and two possible phase-plane formalisms for their  dY Y[2X+ou(a— 1Y+ (1 -a)XY+ u(a+ B)X?]
study. Two special cases, the source-type solution and the gy~ X[X+ paay — aXY+ ula+ B+ )X
so-called dam-break problem, will be discussed in detalil. (10

_ @8 NB+1) (= ¢ )V
=¢ X paBla

Y

II. SIMILARITY SOLUTIONS together with

In this section we present a systematic approach to obtain dé dx
similarity solutions of Eq(5) for the general case>0 and ds= E = X+ paoY — axXY+ pla+ B+ 1)X2 (11
-0 < B< +o, As the dimensional quantities governing the
space-time evolution dfi aret, x, andk, and assuming that and
the boundary and initial conditions introduce only one addi-
tional paramete@, an appropriate class of units of measure- _ XdY
ment may be used to define all the dimensional quantities S= Y[2X + ou(a=1)Y + (1 - a)XY+ u(a+ B)X?]’
involved in the system, consisting of a characteristic scale (12)
for h, Ly, a horizontal length_,, and a time scald. The
scalel, has different interpretations depending on the physiywhere s=In ¢ and o=[ay+\(a+1)]/[ad-\(B+1)], with
cal meaning oh; so, for examplel;, can be a characteristic ad-\(B+1) 0.
level in problgms rgla’ged '_[0 fluid flows, a_characteristic scale  Each solution of Eq(10) represents a particular self-
of the probability distribution when E@S) is read as a non- - gjmijar current. The solutions of self-similar problems de-
linear Fokker-Planck equation, or a temperature scale Whefeq by specific initial and boundary conditions are given by
Eq.(5) is the heat equation. We notice that in the p_roblems Obne or more curves on the plafi,Y): to determine which
interest in the present work, may always be considered t0 0 0ra| curve corresponds to the given problem, it is neces-
b.e mdep(.ande.nt of,, even when hath of the_m are lengths, sary to study the relation betwe&mandX about the singular
since their ratl?_h[/ilg_z]does not appear explicitly in the gov- v of the plangX,Y) and the approximate behavior of
erning parameterg34]. .

. . . . $(€) about them. The complete solutiap(¢) can then be
With these assumptions, the dimensionshaind of the derived through one of the relatioi8), once the function

governing parameters can be expressed as relatingY and X and one of either Eq11) or Eq. (12) are

[h]=L,, [tI=T, [x]=L,, known.
An alternative phase-plane description of the problem,
[K] = L§a+l)/aLH(ﬁ+l)/aT—l’ [G]= LZLE&A. (6) similar to that of[25] (see alsd26,35), can be obtained by

choosing a different set of dimensionally independent quan-
Noticing thatt, k, and G are dimensionally independent tities and studying separately Eq4) and(2). In particular,
when y=(a+1)5+(B+1)y#0, a relation between two di- using X, t, and k, which implies that8+ -1, dimensional
mensionless variablegs=¢(&) can be obtainefi34], with analysis leads to
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| |a+l al(B+1) X
h= Z(n) U= Vo), (13
where
|X|X/(ﬁ+l)
7= G B Dgad BN (14)

Z, V, and n are dimensionless variabled;and » are always
positive, whileV has the same sign ofu. If y=0 and\
=adl(B+1), 5 is simply a parameter and andV are two
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lll. SELF-SIMILAR SOURCE-TYPE SOLUTIONS

In this section we study the spreading of a finite volume
initially concentrated at a point, thus generalizing the classi-
cal solutions of the heat and the porous medium equations
[16,34,36, as well as the solutions for viscous fluids with
power-law rheology[26].

We assume that a given volume per unit wid@®, is
initially released in the sectiox=0. With the further hypoth-
esis of symmetrical evolution with respectxs0, the analy-
sis can be limited to the semi-plare- 0 with w=+1. Since

constants, determined by the boundary and initial conditionghe dimensions o6 are[G]=L,L (i.e., y=6=1 and\=0),

In the general case whergis a variable dependent onand

Eq. (8) becomes

t, the expressions corresponding to the continuity and mo-

mentum equations can be obtained introducing @) in
Egs.(1) and(2), respectively, as

dv +B+2
77K—= _arh V—( X vin- )ndz
adny a B+1 B+1)zdy’
(15
AN a [a+l X ndZ)
"\uw's) + + - ]=0, (16
“(“ z) ,8+1< a  B+1zdy (16

whereu' =|V|/V, with uu'=|x|/x. Substituting Eq(16) into
Eq. (15), one obtains

dv_NZV) dy__ x
dZ D@ZV)' 75 aD(ZV) dz (7
where
Nz V) =1-2FBr2, D(VZ)[ X a9 +>\}i
a p+1 p+1 xZ
(18
and
a 2
D(Z,V)z_zx{ﬂ,(M,L/) (1+8) +(1+a)<1+/3>]
a z xa xa
(19

The solution of Eq(17), usually numerical, employed in Eq.

(13) allows one to findZ(#) and thush(x,t).

Notice that the qualitative study of the equation in the
phase plan€Z,V) can be more complex than that of Eq.
(10). On the other hand, besides being more directly con-
nected to the physical variables of the physical problem, the
phase planéZ,V) has the advantage of requiring only one
integration, instead of two, to go back to the original coordi-

nates.

In what follows the source-type and the dam-break prob-

lems will be analyzed. The values of, 6, and \ for the
source-type solutions lead to an expression of @y solv-
able in closed form for any and 8. The dam-break prob-

1 =T platp)la laryr
T LTI g, 20
where
_ h
¢= G(01+1)/(a+5+2)(kt)—a/(a+ﬁ+2) !
- (21)

g = G(,B+l)/(a+,8+2)(kt)a/(a+B+2) '

Equation(20) is an exact differential that can be integrated
once to yield

———— - plPla(— gy =Cy,

a+IB+2 (22)

whereC;=0 for symmetry. Moreover, since the second term
of Eq. (22) is positive, the conditior3>—(2+«) must be
satisfied. With a second integration, an analytical solution for
B#—1 can be obtained as

1/(B+1)
B 1) @9

([Cg<a+ O

with Co=[a/(a+B+2)]*. C; is given by the condition of
constant volume, that for symmetry can be written as
[op(e)de=1/2, where, when B>-1,&=[Csa
+1)/C,]M1%9 s the position of the front, while, whef<

-1, ¢ decays with a power-law tail fof that tends toe(&,

— +). In both of the cases the expression @y is

2r( 1+ rl1+—
l+a 1+

1 + @\ ~H1+@) | T+ (1+p)(2+arp)
1+ 1/(1+B)< )
{( B’ G,

C3:

(24)

lem, instead, has analytical solutions for particular values of
the parameters and 8. In the other cases, the phase-planewherel’(:) is the Gamma functiofi37].

analysis is useful to find the approximate behavior of the

solutions about=0 andé=+»,

In the limiting case ofB=-1, the solution of Eq(22)
reads
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1 al/(l+a) ( a )a §a+l ¢
=————exp - |— | —— 25 p=2
=3 ( 1 ) a+1l) a+1 29 a)
r 04
l+a
and contains the Gaussian distribution far=1 (heat 02

equation.

The passage from solutions with fronts to solutions with-
out fronts aspB decreases is shown in Fig(al for a fixed
value of a. Figure Ib) shows the role ofx: as« increases,
the resistances to the flow are higher and the velocity is
reduced. As a consequence, whens higher the product
() @*Ble(—g") Y which is proportional to the volumetric
flux g=uh, is lower and thus the curves in Figbl tend to
flatten.

When Eq.(5) is interpreted as a nonlinear Fokker-Planck
equation, the source-type solutio(3) and (25) represent
the transient evolution of the PDF of a process that starts
with probability equal to 1 from the same initial condition.
Accordingly, fora=1 and for different values of the param-

eter B8, h(x,t) corresponds to Tsallis-type distributions, that 0.4 0.8 12 ¢
appear in nonextensive statistical mechar(iz8,3Jd. The _ _ _
support forh(x,t) is compact wherB> -1 [Eq. (23)], while FIG. 1. Profiles of source-type solutions, Eg3), with (a) «

h(x,t) has exponential tails fogf=-1 [Eq. (25)] and power- =2,~5/2<p<2and(b) f=1,1/2<a<3.

law tails for 8<—-1 [EQ. (23)]. In particular, with an appro-
priate rescalingh(x,t) is a Cauchyor Lorent distribution a L Bl ) Nlar

whenB=-2 and a Studentsdistribution of degrees when L1507 pL P (= ' )M’ (27)
B=—(w+3)/(w+1), with —3<B<~-1.

In closing this section, we notice that solutions formally Analytical solutions of Eq(27) exist only for particular val-
equal to Eq(23) and(25), but with different values of con- ues of the parameters. In the other cases numerical proce-
stants and parameters, can be obtained whenever the lefiures are necessary to have quantitative results, while a
hand side of Eq(8) is an exact differential, i.e., wheR  qualitative behavior of the solutions can be obtained by
=a(6-7y)/(a+pB+2). In these cases the value of the integra-studying the two phase plané€X,Y) and(Z,V). In the fol-
tion constants is related to the nature of the param@ter |owing some analytical solutions for special valuesaofind
which in general may also be time dependent. B are presented along with the study of both phase planes for

the particular case of the Chezy ldw=2, g=1).
Again we notice that the results obtained for the dam
IV. DAM-BREAK PROBLEM break can be extended to all the situations in whist0, i.e.,

. . . A=—avyl(a+1), since the structure of the equation describ-
| The classical dam-bree(ljkt?rotr)]lem is theI st]ydy of”a flow 'n'ng the problem remains the same of E27). In these cases
plane geometry generated by the removal of a wa .separathe boundary and initial conditions may also depend on time
ing two pools of different depth, andh, [3,38—4Q. With- according to the dimensions G
out loss of generality, the dam may be assumed to be at ’
=0.

In this problem the boundary conditions are formally de- A. Analytical solutions
fined by two external parametefs and G*, which can be
chosen to be, for examplle; andh,. The external parameter
G is thus a constant height scdlé&5]=L},), so thaty andA
are zero, while5=1. In generalh=h(t,x,k,G,G*) so that

Analytical solutions of Eq(27) can be obtained whef
=-a, in which case

dimensional analysis leads to a relatigr ¢(¢,11*), where C: 166’ = ul(= ¢’ w)te] = - l(— @' )T agy,
o o
b= = g me=2. (20 -
G’ GUrDar () e/l G’ Whena=-8=1, Eq.(5) is the well known heat equation and

the solution of Eq.(28) is given by ¢=C,erf(£2/4)+C,,
I1* is a parameter that does not enter explicitly in the equawhereC, andC, are constants obtained imposing the value
tion, but defines only the boundary conditions of the similar-of ¢ when¢ goes to 0, and erf:) is the error functiorf37],
ity process. Accordingly, for the dam-break problem, B). i.e., the integral of the Gaussian distribution.
becomes When a # 1, integrating Eq(28) once leads to
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¢
1
a) b)
6 Za o 05 X FIG. 2. Profiles and relative phase plane of
’ the dam-break problem whef=-a [Eq. (30)];
] (a),(b) =3 and(c),(d) «=2/3.
% |
X
-6 -3 0.5
) l-a o? &\ |1 Since the structure of the phase pldieY) remains simi-
= 3T 4412 ' (29 Jar for other values ofx and 3, it is useful to analyze the

phase plane in the cagg=-«, which can be obtained ex-
C; being an integration constant. When>1, a/(1  actly. In the plane of Fig.®), wherea=3, the origin and the
—a)<0 and¢’ tends to 0 foré=+oo; the constant sign op’ point (-1,0 correspond to¢=0, while (X,Y)=(0,1) is
assures that the flow follows the same direction along theeached wher tends to 2. WhenX<0, the lines connect-
entire  x axis. When a<1,¢'=0 for ¢&=2x& ing the point(0, 1) to the origin are profiles fronp=1 at -
=+2(at+1)Cs/a. In this situation the flow is undisturbed to different values ofp at £&=0; for X>0, instead, the curves
upstream of £, and downstream of & and the free surface from (0, 0) to (0, 1) correspond to free surfaces from a cer-
passes from the levdl; to h, in the interval limited by €, tain value at{=0 to ¢=h,/h; for £&=+0. When ¢=0 for ¢
and +£, maintaining at those points the same derivative= +, the corresponding curve in the phase plane is that from

@' (£&) =0, but having a discontinuity i (x&p). (0, 0) to a saddle a2, 1)—not shown in the figure. The flow
A second integration offers the general solution of Eq.from ¢=1 whené=-« to ¢=0 at{=0 is represented by the
(28) as curve joining the pointg0, 1) and(-1,0) in the plangX,Y).
1 al(1-a) For a<1 tr_]e phza_;e—plane structure chan@_ﬁ'ﬂg. 2d)].
¢:C4_M§<C3_“> When ¢(+&;) is positive, the position of the interfaces at
@ +&(X>0) and £4(X<0) moves to the point0, +«) in the
(1 a 3 28 ) plane(X,Y). The point¢(+£&,)=0 is located at+, +x) in
X ,F 2 T-a'2 214 a) (30)  the plane(X,Y). Finally, the profile starting fromp=1 at ¢

=-¢, and reachingp=0 at ¢=0 is represented by the curve
where C; and C, are integration constants, which can be Starting from(-1,0) in the plane(X,Y).

obtained by imposing the value @f at += or at +£, when, A different class of analytical solutions can be obtained
respectivelya>1 anda<1; ,F,(-, - ;- ;) is the hypergeo- solving in a closed form the equation defining the phase
metric function[37]. ! plane. For the dam-break problem this correspondgsée

Figures 2a) and 2c) show different forms of the solution Eq. (10]
for u=+1, i.e., for flow in the¢ direction.G is assumed to
be the leveh; at <, so that¢ tends to 1 whe either goes dY Y[2+(1-a)Y+ ula+p)X]
to —o(a>1) or goes to £,(a<1), while ¢ tends toh,/h; ax X[1—aY + pla+ B+ DX] (32)
when & goes either to «(a>1) or to +&(a<1). Lowering

the downstream level from 1 to O gives different profiles ro|iowing [42] (see also[15]), analytical solutions of Eq.
connecting smoothly the two levels; as already mentloned(31) can be found whe=—(3+a)/2 anda+#1 as
whena <1 the second derivative of the profile irgzHs not

continuous. Other self- S|m|Iar: pr:oﬂrlles mﬁy be obtam:d by - 1 Yeiao

imposing¢$=0 at a certairg, which physically correspond to 1 a- o -

the case of a drain at a fixgd Interestingly, in groundwater XY 1+ 2 S+ p— X =const. (32)
hydraulics, when Darcy’s law is employgéd=1,5=0), the

problem of a drain a£=0, i.e., fixed in the physical coordi- Whena>1, the phase plang®ot shown have similar be-
nates(x,t), is mathematically equivalent to the boundary- haviors to that analyzed in Fig(®; in particular, whena
layer problem studied by Blasiy88,41]. =-B=3, Eq.(32) describes exactly the phase plane of Fig.
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Y v

05 FIG. 3. Comparison of the two

planes (X,Y) and (Z,V), for

Chezy's law (a=2,8=1), in the

1 case of the dam-break problem.

Z
06
- x 05
-0.2 -0 0.1

2(b). For «<1, the phase planes are similar to that of Fig.(34) presents seven singular points. Only four of them will
2(d), with the only difference that now there is a saddle inbe studied, since they are connected to specific problems of
(2u,1), which corresponds to a free surface that goeg to practical interest.
=0 whené=+oo, The origin is an unstable node; the study of E24) lin-
When «=1 and B=-(3+a)/2=-2, Eq. (31) can be earized about it leads t6~ AX?, whereA, is an arbitrary
solved with separation of variables and the solution, in im-parameter. Linearizing Eq35) about(X,Y)=(0,0) and in-
plicit form, is tegrating givesé~A.X, where A, is another parameter. It
follows that, foré=0, X=Y=0. Substituting the previous re-
Y exp(-Y) = CX2exp(— uX), (33) sults into Eq.(36), we obtain that, abou§=0, ¢ is approxi-
mately given bygp=A,exp(—£/A;), whereA, is the integra-
with C, an integration constant. The behavior of the systention constant. As a resulty tends to the finite valud, as ¢
in this last particular situation is analogous to the cases whe@o€es to zero.

a<1 [Fig. 2d)]. The behavior of the system about the stable ng¢gY)
, ’ =(0,2) can be studied by shifting the origin to this point and
B. Phase-plane analysis for Chezy's law proceedings as before. Linearizing then about the origin of

Because of its frequent appearance in physical applicahe new coordinate system, we gét —6X+AzX?3+2 and
tions concerning diffusion problems, EQ1) has been stud- &~ A,X 3 with A; andA, arbitrary parameters. So, whén
ied in various context$15,17,42,43 An extended qualita- tends to < and +o, X goes to zero from negative and posi-
tive study of the nature of each singularity for different tive values, respectively, whil& tends to 2. Furthermore,
parameter values can be found#4#] and references therein. from Eq. (36) it follows that ¢=Asexp(A3/3&%), which
Here we will analyze the phase pla¥,Y) for the dam- means thaip tends to a finite value wheggoes to infinity.
break problem for the case in which the resistances follow Thus, the curves joining the two point8, 2) and (0, 0)
Chezy's law(i.e., =2 and8=1). The results of the phase in the plane(X,Y) correspond to self-similar profiles from
plane (X,Y) will be then compared to those obtained from é=+« to £=0.
the plane(Z,V). The point (X,Y)=(-1/4,0 is a saddle, about which

In this case and witlu=1, Eq.(31) and Eq.(11) are Y~9(X+1/4)/2, so that é~AgX+1/4H*5 and ¢
=Aexd 4(—&/ Ag)¥ (€1 Ag)Y*, where Ag<0 andA;>0 are
integration constants. The curve frgt 2) to (-1/4,0 rep-
resents a self-similar flow going fromp=1 at £=-o0 to
¢=0 at&=0.

The last point analyzed is the saddk,Y)=(+, +) in

d¢ dXx the directionY/X=1. Its analysis is more complex than the
E = m (35) other points. To this regard, the substituti¥r1/x andY
=1/y leads to an equation whose dominant terms are qua-
with dratic in bothx andy. Following [45], the behavior of the
(= ') (- )12 system about this point is found to B&X-3Y)=AgX?¥2Y.
— 32 (36)  From EQq.(35) one obtaing=X/(AgX+1) and, with Eq(36),

¢ ¢ d=Ag(Agé—1). This point corresponds to a front in the co-
A full representation of the numerical solutions of E84) is  ordinates(¢, &), where the depth of the curreitt goes to
shown in Fig. 8a). From the analytical point of view, Eq. zero at a finite value of. Accordingly, the curve connecting

dY  Y(2-Y+3X)

dX~ X(1-2Y +4X) (34

and

X=¢

2
’ Y:_2
3¢
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the origin of the plané€X,Y) to (+«, +«) is a current from a B
particular value ofp at £&=0 to ¢=0 at&=1/As. a

It is instructive to compare the previous analysis in the
plane(X,Y) with that obtained using the phase plai@eV) o MGS
defined by Eq(17) [Fig. 3b)]. With the parameters corre-
sponding to Chezy’s law, Eq17) is

av _ 2V[3Z%+ u' (2 - 3V)V]
dz~  3z(2u'V?+37%)

D
A qualitative study of the previous equation results more a
complex than that of Eq.34), since the degree of the domi- !
nant terms of both numerator and denominator is higher;
moreover, given the presence @f, Eq. (37) has two differ-
ent formulations forV respectively higher and lower than H
zero. This makes it more difficult to find conditions that may -1 Fr——————-@® - ———-—=—"—"——————————-
be useful in the numerical integration of the equation. On the
other handZ andV are more directly related to the physical
variablesh andu and therefore their interpretation is some-
how easier. In particulaZ is always positive, while the sign cL
of Vis equal to that ofy. When# goes tox, Z tends to zero -2
and vice versa, so that the curves going from the origin to the

oC

(37)

point (+e,0) correspond to profiles fromy=+% to 5=0. d b

The curve that in the semiplané<0 separates the curves e

that reach(+, 0) from those that go t¢0, —») is the profile ¢

that, starting fromp=1 at =-«, reaches 0 when=0 [25]. -3 L

The point(0,2/3 has a finite velocity wheh=0 and it thus

represents a front in the physical coordinates. FIG. 4. Relation between different couples®find g and par-

It should be noticed that, while in general the approachicular analytical solutions of the source-type and the dam-break
using the phase plan@&,V) is more complicated than the Problems(see text for detais
one using(X,Y), in those cases where the degree of the
dominant terms is equal for both the phase planes, the analpf freedom; in particular the Caucligr Lorent? distribution
sis in the planéZ,V) may be more efficient. This is the case is the solution of the source-type problem wher1 and
of =1, which finds applications in groundwater hydrology 8=-2 (point CL). When B> -1, fronts occur and the solu-
and Newtonian viscous fluid25,43. On the other hand, for tion has compact support. In such a region, various couples
the classic case of the heat equation the description with thef the parameters can describe different problems, such as
plane(Z,V) is not possible. the porous-media equatigpoint D in Fig. 4) [34], the mo-
tion of a finite volume of water following Chezy’s lagpoint
C in Fig. 4) or the Manning—Gauckler-Strickler lagpoint
V. CONCLUSIONS MGS in Fig. 4, and the flows of non-Newtonian viscous

We have studied self-similar solutions of a nonlinear dif-fluids (line a in Fig. 4) [26].

ferential equation obtained by generalizing the relation usu- Similarly to the source-type ;ol.utlions, aIsp the dam-break
ally employed in hydraulics to model the resistances in opeffroPlem has solutions with an infinite celerity of the pertur-
channel flows. The resulting equation admits a wide range gpation wheln,B_sl—l,l while f;or;]ts or ||nterfr(]alces arlsef for
self-similar solutions, which, for certain values of the two A~ ~1. Analytical solutions of the problem have been found
parameters: and 3, include already known solutions. Figure fOF couples of values of the two parameters lying on the lines
4 summarizes the relation between the particular physicaﬁ andg in Fig. 4-[see Eqs(30), (32), and(33)]. .When the
processes and the couples @fand 3 for which analytical ~9°Verning equation does not have exact solutions, the study

solutions of the source-type and the dam-break problemgf the problem can be carried out qualitatively through the
have been found. phase-plane analysis employing some suitable variable trans-

Solutions of the source-type problem exist for valuesof formation. The approximate behavior of the system about
and j satisfying the conditiong>—(2+a), that is for critical points is useful to determine the boundary conditions

couples of values in the region of the semiplarie 0 above for the numerical integration and to obtain an overall under-
the lined reported in Fig. 4. Wheg<—1, the finite volume standing of the families of self-similar solutions for different

of the concentrated source spreads immediately to infinit@arameter values.
distance with tails that decay exponentially, whgsn-1, and
algebraically, when3<-1. The pointH reported in Fig. 4
corresponds to the heat equation, while the vertical segment We gratefully acknowledge Thomas P. Witelski for useful
e corresponds to Studentglistributions of different degrees discussions.
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